Allosteric Coupling in FimH
نویسندگان
چکیده
Background: The bacterial adhesin FimH is allosterically regulated. Results: Mutations designed to control the allosteric state of the protein created low or high affinity variants as predicted. Conclusion: Three regulatory regions are strongly coupled together, while the active site is more weakly coupled to those regions. Significance: Allosteric regulation can be used to develop antiadhesive therapies for bacterial infections.
منابع مشابه
FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation.
The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an atomic force microscope in order to test th...
متن کاملStructural Basis for Mechanical Force Regulation of the Adhesin FimH via Finger Trap-like β Sheet Twisting
The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH interacts with the mannose-binding (lect...
متن کاملCatch-bond mechanism of the bacterial adhesin FimH.
Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial gl...
متن کاملComparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli.
FimH, the adhesive subunit of type 1 fimbriae expressed by many enterobacteria, mediates mannose-sensitive binding to target host cells. At the same time, fine receptor-structural specificities of FimH from different species can be substantially different, affecting bacterial tissue tropism and, as a result, the role of the particular fimbriae in pathogenesis. In this study, we compared functio...
متن کاملEvolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions
Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium b...
متن کامل